Mark Scheme (Results)

November 2018

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2018
Publications Code 1MA1_3H_1810_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

11 Number in brackets after a calculation
Where there is a number in brackets after a calculation E.g. $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas E.g. "12" $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets E.g. [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

14 Misread
If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity
B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
3 (a)	2, -4, 2, 8	B2	all 4 values correct	
		(B1	for 2 or 3 correct values)	
	Graph	M1	(dep B1) for at least 5 points plotted correctly ft from part a	
		A1	for a fully correct curve drawn	Accept freehand curves drawn that are not line segments; there must be some attempt to draw the minimum point below $y=-4$
	-2.6 or 1.6	B1	for 1 correct value, ft a non linear graph	Award for -2.6 or 1.6 or both values but do not award the mark if a correct value is given with an incorrect value. Accept 1.56 or -2.56 Note for ft to be applied if the graph may be joined by line segments

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
4 (a)	5	M1	"2" $\div 40 \times 100$	" 2 " comes from their reading of the height of the 20 to 24 column
		A1	cao	
	9.5 shown	M1	for frequencies of $11,8,13,6$ and 2 (allow one error) or for midpoints $2,7,12,17$ and 22	May be seen on chart
		M1	for finding at least 4 products $f x$ consistently within interval (including end points)	
		M1	$\begin{aligned} & \text { for } \Sigma " f x " \div(" 11 "+" 8 "+" 13 "+" 6 "+" 2 ") \\ & \text { or }(11 \times 2+8 \times 7+13 \times 12+6 \times 17+2 \times 22) \div 40 \\ & \text { or } \Sigma " f x "(=380) \text { and } 9.5 \times(" 11 "+" 8 "+" 13 "+" 6 "+" 2 ")(=380) \end{aligned}$	Evidence of two different calculations that should lead to 380 are required for this mark
		C1	for correct figures showing the answer or accurate figures to compare from correct working eg 380 from two calculations	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
6	17.3	P1	for full process to find either angle eg $(180-90) \div(2+3) \times 2(=36)$ or for 36 or 54 seen as an angle	May be seen on diagram Condone correct values if incorrectly placed.
		P1	for a correct equation using trigonometry eg $\cos [A]=14 \div A B$	This must be shown as an equation with all four elements (eg cos, $[A], 14, A B$) present. [A] could be 36 or any angle clearly and unambiguously identified as A. This also applies to $[B]$ with Sine.
		P1	(dep previous P mark) for rearranging their trigonometry equation to make $A B$ the subject $\operatorname{eg}(A B=) " 14 \div \cos 36 "$	
		A1	for an answer in the range 17.3 to 17.4	If an answer is shown in the range in working and then incorrectly rounded award full marks.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
7	Diagram drawn	$\begin{array}{\|l\|} \hline \mathrm{B} 2 \\ \text { (B1 } \end{array}$	for correct frequency polygon for points plotted at correct midpoints of intervals or joining points at correct heights consistently within intervals including plotting at end values or correct frequency polygon with one point incorrect or correct frequency polygon with first and last points joined directly)	Plotting at $(5,14),(15,18),(25,26),(35,12)$ Must use line segments for B2 Joining must be with line segments NB ignore any histogram drawn and any part of frequency polygon outside range of first and last points plotted
8	8	P1	process to start the problem eg $x y=45$ and $x z=15$ and $y z=27$ or $5 \times 9(=45)$ and $3 \times 9(=27)$ and $3 \times 5(=15)$ or 3,5 and 9 stated	Maybe seen on diagram [Volume] must come from multiplying together what they clearly indicate as the 3 dimensions of the cuboid. The three dimensions cannot be 45 , 27 and 15
		P1	for $3 \times 5 \times 9$ (=135) or 2 of " 9 " $\div 2.5(=3.6)$ or " 5 " $\div 2.5(=2)$ or " 3 " $\div 2.5(=1.2)$	
		P1	for $2.5^{3}(=15.625)$ or all of " 9 " $\div 2.5(=3.6)$ and " $5 " \div 2.5(=2)$ and " 3 " $\div 2.5(=1.2)$	
		P1	for a complete process to find the number of cubes possible eg [volume] \div " $15.625 "$ (=8.64) or " 3.6 " \times " 2 " \times " 1.2 " (=8.64)	
		A1		

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
9 (a)	$\begin{aligned} & 2 x^{3}+x^{2}-7 x \\ & -6 \end{aligned}$	M1	for a method to find the product of two linear expressions eg 3 correct terms out of 4 terms or 4 terms ignoring signs	Note that (eg) $-x-6$ in expansion of $(x-2)(2 x+3)$ is to be regarded as 3 correct terms. First product must be quadratic but need not be simplified or may be simplified incorrectly
		M1	for a complete method to obtain all terms, half of which are correct (ft their first product) eg $2 x^{3}-x^{2}-6 x+2 x^{2}-x-6$	
		A1	cao	
(b)	-5	M1	for beginning to combine indices eg $4+n$ or y^{-3+2}	
		A1	cao	
(c)	1.27 and -0.472	M1	for substitution into the formula	Condone one sign error in the substitution Accept -4^{2} or $(-4)^{2}$
		M1	for simplifying to the form $\frac{-b \pm \sqrt{N}}{k} \operatorname{eg} \frac{4 \pm \sqrt{76}}{10}$ or 1.27 to 1.28 or -0.48 to -0.47	
		A1	for 1.27 to 1.28 and -0.48 to -0.47	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
12	73.6	P1	for correct initial use of Pythagoras eg $5^{2}+5^{2}(=50)$ or a trigonometric ratio in the form $\frac{5 \div 2}{0.5 A C}=\sin 45 \mathrm{oe}$	do not accept $\sqrt{20} \div 2$
		P1	for finding the length of half of the diagonal eg $\sqrt{" 50 "} \div 2(=3.5 \ldots)$ or $0.5 A C=\frac{5 \div 2}{\sin 45}(=3.5 \ldots)$ oe	
		P1	for process to use tan eg $\tan T A C=(12 \div$ " $3.5 .$. ") $(=3.3 .)$. or complete alternative method arriving at an equation with the subject as $\sin T A C$ or $\cos T A C$	
		A1	for an answer in the range 73.58 to 74.1	
13	408	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $1.01 \times 400(=404)$ or 408.04 or 412.08 cao	412(.08) on the answer line M1A0 1.01×400 may be seen as part of a calculation
14	Evidence of solution	M1	for constructing an equation eg $y \alpha \frac{1}{x^{3}}$ or eg $y=\frac{k}{x^{3}}$ oe	
		M1	for substituting in the values a and 44 into $y=\frac{k}{x^{3}}$	
		C1	for a complete method to use the equation, the value of k and $x=2 a$ to show $y=5.5 \mathrm{eg}(2 a)^{3} y=44 a^{3}$ and $y=44 a^{3} \div 8 a^{3}=5.5$	Must show all steps clearly

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	proof	C1	for writing an expression for an odd number, eg $2 n+1$ or $2 n-1$ (assuming n is any integer) or states n is even and eg $(n+1)$ or $(n+3)$ as odd numbers	Expansion of $(2 n-1)^{2}-(2 n+1)^{2}$ oe is acceptable
		C1	for a correct expression of the form $(2 n+1)^{2}-(2 n-1)^{2}$ expanded eg $4 n^{2}+12 n+9-\left(4 n^{2}+4 n+1\right)$ or $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$ or $(2 n+1+2 n-1)(2 n+1-(2 n-1))$ or when n is even and eg $\left(n^{2}+6 n+9\right)-\left(n^{2}+2 n+1\right)(=4 n+8)$	
		C1	for a correct simplified expression as a multiple of 8 eg $8 n+8$ or $8 n$ or when n is even and eg $4 n+8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	
16	39.9	P1	for finding the length of the minor or major arc eg $\frac{220}{360} \pi \times 12(=23(.03834 .)$.	Allow appropriate rounding if calculation seen in parts
		P1	for substituting into the sine or cosine rule to find $O D$ eg $14 \div \sin 140=O D \div \sin 24$ or $\left(O D^{2}=\right) 6^{2}+14^{2}-2 \times 6 \times 14 \times \cos 24(=78.5 \ldots)$	Must involve $O D$ in the relationship but may be implied
		P1	for a complete process to find the length $O D$ eg $14 \div \sin 140 \times \sin 24(=8.8(58778 .)$.	
		P1	for a complete process to find the perimeter eg "23(.03834..)" + 14+"8.8(58778..)" - 6	May be seen in multiple calculations
		A1	for an answer in the range 39.8 to 40	If an answer in the range is seen in working and then incorrectly rounded award full marks.

Modifications to the mark scheme for Modified Large Print (MLP) papers. Paper 3H.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H		Modification	Mark scheme notes
Question			Wording added 'There are four spaces to fill.' Table turned to vertical format. Grid enlarged. Y axis changed to go up in units of 2 from -10 to10.
3		Diagram enlarged. Right axis labelled. Shading changed to dotty shading. Axes labels moved to the left of the horizontal axis and above the vertical axis.	Standard mark scheme
4		Diagram enlarged.	Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Frequency table changed to: $5,20,25,10$ and Frequency column widened. Question wording changed from 70 cars to 60 cars.
6		Diagram enlarged and model provided for all candidates. Wording added 'and on the model: $15 \mathrm{~cm}^{2}, 27 \mathrm{~cm}^{2}, 45 \mathrm{~cm}^{2}$	Standard mark scheme $(5,5),(15,20),(25,25),(35,10)$
7			

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
9	(a)	MLP only - x changed to y.	Standard mark scheme with x changed to y.
9	(b)	Wording added, 'when'.	Standard mark scheme
11		Diagram enlarged.	Standard mark scheme
12		Diagram enlarged and model provided for all candidates. A dot added at the centre of square $A B C D$, labelled M. A line added joining A to M and another line added joining M to T. An angle arc added at A. Question wording changed to 'The vertex T is 12 metres vertically above the midpoint M of $A C$,'	Standard mark scheme
16		Diagram enlarged. Shading changed to dotty shading. $A D$ labelled 14 cm . Question wording changed to 'The shape is made from the triangle $A O D$ and a sector of a circle, centre O and radius 6 cm .'	Standard mark scheme
17		Diagram enlarged. x axis marked in units of 25 (as shown). Table changed as shown below. Number of students changed from 570 to 575	Standard mark scheme but histogram drawn at 7.5, 3.75, 5, 2.5, 2.5 Allow some tolerance on heights within gaps if intention is clear. Median at (approx.) 65.75 so allow within range 60 to 70.

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
20		Diagram enlarged and grid changed as shown below. Wording added, 'It shows triangle A, triangle B and triangle C on a grid. A cut out triangle is available if you wish to use it.' A cut out shape provided for all versions. Question wording changed as follows: (a) Describe the TWO transformations that map triangle A onto triangle B, then triangle B onto Triangle C. (1 mark). Three answer lines added for part (a). One point on triangle A is invariant under the combined transformation from triangle A to triangle C. (b) Find the coordinates of this point. (1 mark)	Part (a): award 1 mark for a full description of both transformations: A to B: a rotation of 180° about $(-1,0)$ B to C: a translation of $\binom{-3}{2}$ Do not award the mark if there is any ambiguity or any reference to other forms of transformation. Part (b): award 1 mark for $(-2.5,1)$

